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Preface 
 

 

 

 

 

Physarum polycephalum we have studied in the project Physarum Chip: Growing Com-

puters from Slime Mould belongs to the species of order Physarales, subclass Myxogastromy-

cetidae, class Myxomycetes, division Myxostelida. It is commonly known as a true, a cellular 

or multi-headed slime mould. P. polycephalum has a complex life cycle. Plasmodium is                    

a óvegetativeô phase, a single cell with a myriad of diploid nuclei. The plasmodium is visible 

to the naked eye. The plasmodium looks like an amorphous yellowish mass with networks of 

protoplasmic tubes. The plasmodium behaves and moves as a giant amoeba. It feeds on bacte-

ria, spores and other microbial creatures and micro-particles. When foraging for its food the 

plasmodium propagates towards sources of food particles, surrounds them, secretes enzymes 

and digests the food. Typically, the plasmodium forms a network of protoplasmic tubes con-

necting the masses of protoplasm at the food sources which has been shown to be efficient in 

terms of network length and resilience. When several sources of nutrients are scattered in the 

plasmodium's range, the plasmodium forms a network of protoplasmic tubes connecting the 

masses of protoplasm at the food sources.  

 

The main objectives of the project are to design and fabricate a distributed biomorphic 

computing device built and operated by slime mould of Physarum polycephalum. A Physarum 

chip (see Figure 1, 2) is a network of processing elements made of the slime mouldôs proto-

plasmic tubes coated with conductive substances; the network is populated by living slime 

mould. A living network of protoplasmic tubes acts as an active non-linear transducer of in-

formation, while templates of tubes coated with conductor act as fast information channels. 

 

The Physarum chip will have parallel inputs (optical, chemo- and electro-based) and 

outputs (electrical and optical). The Physarum chip will solve a wide range of computation 

tasks, including optimisation on graphs, computational geometry, robot control, logic and 

arithmetical computing. The slime mould-based implementation is a bio-physical model of 

future nano-chips based on biomorphic mineralisation. 

 

We envisage that research and development centred on novel computing substrates, as 

self-assembled and fault-tolerant fungal networks will lead to a revolution in the bio-

electronics and computer industry. Combined with conventional electronic components in                  

a hybrid chip, Physarum networks will radically improve the performance of digital and ana-

log circuits. 

 

 

 

 



 

 

Figure 1. Phyrasum chip. 

 

 

 
 

 

 

 

 

Figure 2. Polymorphism of Physarum chip. 

 

 

 
 



Taking into account the enormous and growing interest of research centres and com-

mercial laboratories in the recent experimental implementations of chemical, molecular and 

biological computers, we can predict that in the next 20-30 years, networks of slime mould 

mineralised and/or coated with compound substances will become a widespread commodity 

and a very promising component of novel information processing circuits. 

 

This research has been supported by the Seventh Framework Programme (FP7-ICT-

2011-8) and carried out under the leadership of prof. Andrew Adamatzky (Bristol, UK). 

 

For more details please see http://www.phychip.eu/ 

 

Andrew Adamatzky,  

Victor Erokhin,  

Martin Grube,  

Theresa Schubert,  

Andrew Schumann 

 

 

  



 

 

Introduction  
 

 

 

 

 

Symbolic-logical, mathematical and programming aspects of the Physarum chip have 

been studied by Andrew Schumann and Krzysztof Pancerz in Rzeszow, Poland, and this     

book contains some materials from both periodic reports including a list of published works 

(Part I) and from conference presentations (Part II and Part III). In Part II we consider logics 

of Physarum machines and in Part III we consider a programming of Physarum machines. 

Part I and III are written jointly by Andrew Schumann and Krzysztof Pancerz. Part II is writ-

ten solely by Andrew Schumann. This book does not cover all results obtained by us, but just 

some results which are mentioned in the periodic reports and presented at conferences. We are 

grateful for our collaboration to Andrew Adamatzky, Martin Grube, Jeff Jones, Andrei 

Khrennikov, Jan WoleŒski, and Ludmila Akimova with whom we have written some papers 

jointly. In this book we have used some experimental photos taken by our colleagues and pub-

lished in some joint papers (the references to these papers are given with the photos properly). 

 

The aim of this book is to help the reader to learn our main ideas implemented in the 

project fast, without reading long argumentation and mathematical or programming details. 

This book contains main logical ideas, philosophical presuppositions, and mathematical re-

sults used in designing the Physarum chip. 

 

 

Andrew Schumann, 

Krzysztof Pancerz 

  



Part I. Materials from Periodic                

Reports 
 

1. Storage modification machine 

 

 

In the plasmodium behaviour we can implement different abstract automata such as 

Kolmogorov-Uspensky machines, Schºnhage's storage modification machines, etc. In the 

meanwhile, plasmodium's active zones of growing pseudopodia are considered the key phe-

nomenon of all these automata. These zones interact concurrently and in a parallel manner. At 

these active zones, three basic operations stimulated by nutrients (attractants) and some other 

conditions can be observed and defined as basic: fusion, multiplication, and direction opera-

tions. The fusion means that two active zones A and B either produce new active zone C (i.e. 

there is a collision of the active zones) or just a protoplasmic tube. The multiplication means 

that the active zone A splits into two independent active zones B and C propagating along 

their own trajectories. The direction means that the active zone is not translated to a source of 

nutrients but to a domain of an active space with certain initial velocity vector.  

 

Attractants and repellents involved in the stimulation of plasmodium gives a topology 

which can be defined as a Voronoi diagram (see Fig. 3). Within one Voronoi cell a reagent 

has a full power to attract or repel the plasmodium. The distance is defined by intensity of 

reagent spreading like in other chemical reactions simulated by Voronoi diagrams. A reagent 

attracts or repels the plasmodium and the distance on that it is possible corresponds to the 

elements of a given planar set. When two spreading wave fronts of two reagents meet, this 

means that on the board of meeting the plasmodium cannot choose its one further direction 

and splits. Within the same Voronoi cell two active zones will fuse. 

 

 

 

 

 

 

 

 

 



 

 

Figure 3. The Voronoi diagram for Physarum polycephalum, where different attractants have different 

intensity and power. 

 

 
 

 

Let us consider an example of automata. In Schºnhage's storage modification machines 

we deal with a fixed alphabet of input symbols, G, and a mutable directed graph with its ar-

rows labelled by G and identified with possible protoplasmic tubes. The set of nodes X, identi-

fied with attractants, is finite. One fixed node a from X is identified as a distinguished center 

node of the graph. It is the first active zone of growing pseudopodia. The distinguished node  

a has an edge x such that xg(a)=a for all g from G. That is, all pointers from the distinguished 

center node point back to the center node. Each g from G defines a mapping xg from X to X in 

accordance with directions of growing pseudopodia; xg(b) is the node found at the end of the 

edge starting at b labelled by g. Each word of symbols in the alphabet G is a pathway through 

the machine from the distinguished center node. For example ABBC would translate to taking 

path A from the start node, then path B from the resulting node, then path B, then path C. With 

respect to the word ABBC, the plasmodium moves. 

 

Schºnhage's machine modifies storage by adding new elements and redirecting edges. 

Its basic instructions are as follows:  

 

¶ Creating a new node: new W. The machine reads the word W, following the path repre-

sented by the symbols of W until the machine comes to the last symbol in the word. It 

causes a new node y associated with the last symbol of W to be created and added to X; its 

location in relation to the other nodes and pointers is determined by W. If W is the empty 

string, this has the effect of creating a new center node a, linked to the old a. For example, 

new AB creates a new node that is reached by following the B pointer from the node desig-

nated by A. The growing pseudopodia from active zone A to active zone B corresponds to 



this word AB. Adding a new node B means adding a new attractant denoted by B within                

a Physarum Voronoi diagram. 

¶ A pointer redirection: set W to V. This instruction redirects an edge from the path repre-

sented by word W to a former node that represents word V. If W is the empty string, then 

this has the effect of renaming the center node a to be the node indicated by V. Notice that 

set W to V means removing nodes and the edges incident to W\V. So, we can remove some 

attractants denoted by W\V within a Physarum Voronoi diagram. 

¶ A conditional instruction: if  V=W then instruction Z. It compares two paths represented 

by words W and V and if they end at the same node, then we jump to instruction Z else 

continue. This instruction serves to add edges between existing nodes. It corresponds to the 

splitting (multiplication) or fusion (fusion) of Physarum. 

 

Thus, a program of Physarum Schºnhage's storage modification machine is any action 

transforming sets X of nodes for growing pseudopodia with the alphabet G into other sets                

X' of nodes for growing pseudopodia with the same alphabet G which carries out by instruc-

tions new W; set W to V; if  V=W then instruction Z.   

 

Within Physarum Schºnhage's storage modification machines we can implement differ-

ent logical systems such as Aristotelian syllogistics. In the Physarum implementation of Aris-

totelian syllogistics, all data points are denoted by appropriate syllogistic letters as attractants. 

A data point S is considered empty if and only if an appropriate attractant denoted by S is not 

occupied by plasmodium. We have syllogistic strings of the form SP with the following inter-

pretation: S is P, and with the following meaning: SP is true if and only if S and P are neigh-

bours and both S and P are not empty, otherwise SP is false. By this definition of syllogistic 

strings, we can define atomic syllogistic propositions as follows: 

 

¶ SaP. In formal syllogistics: there exists A such that A is S and for any A, if A is S, then A is 

P. In Physarum model: there is a plasmodium at A and for any A, if A is connected to S by 

a protoplasmic tube, then A is connected to P by a protoplasmic tube. 

¶ SiP. In formal syllogistics: there exists A such that both óA is Sô is true and óA is Pô is true. 

In Physarum model: there exists plasmodium at A such that A is connected to S by a proto-

plasmic tube and A is connected to P by a protoplasmic tube. 

¶ SeP. In formal syllogistics: for all A, óA is Sô is false or óA is Pô is false. In Physarum mod-

el: for all plasmodia at A, A is not connected to S by a protoplasmic tube or A is not con-

nected to P by a protoplasmic tube. 

¶ SoP. In formal syllogistics: for any A, óA is Sô is false or there exist A such that óA is Sô is 

true and óA is Pô is false. In Physarum model: for any plasmodia at A, A is not connected to 

S by a protoplasmic tube or there exists A such that A is connected to S by a protoplasmic 

tube and A is not connected to P by a protoplasmic tube. 

 



 

 

Physarum strings of the form xy, yx are interpreted as particular affirmative propositions 

ñSome x are yò and ñSome y are xò respectively (i.e. as SiP), strings of the form [xy], [yx], 

x[y], y[x] are interpreted as universal negative propositions ñNo x are yò and ñNo y are xò (i.e. 

as SeP). A universal affirmative proposition ñAll x are yò (i.e. SaP) are presented by a com-

plex string xy&x[y']. The sign & means that we have strings xy and x[y'] simultaneously and 

they are considered the one complex string. 

 

Hence, a spatial expansion of plasmodium is interpreted as a set of syllogistic proposi-

tions. The universal affirmative proposition xy&x[y'] means that the plasmodium at the place 

x goes only to y and all other directions are excluded. The universal negative proposition x[y] 

or [xy] means that the plasmodium at the place x cannot go to y and we know nothing about 

other directions. The particular affirmative proposition xy means that the plasmodium at the 

place x goes to y and we know nothing about other directions. Syllogistic conclusions allow 

us to mentally reduce the number of syllogistic propositions showing plasmodium's propaga-

tion. 

 

The implementation of Aristotelian syllogistic as a particular version of system codified 

within Physarum Schºnhage's storage modification machines shows us how it is difficult to 

guarantee only one direction of the growing plasmodium. In the most cases the plasmodium 

aims to move to different directions. In other words, while in Aristotelian syllogisms we are 

concentrating on one direction of many Physarum motions, therefore we are dealing with 

acyclic directed graphs with fusions of many protoplasmic tubes towards one data point, in 

the most cases of Physarum behaviour, not limited by repellents, we observe a spatial expan-

sion of Physarum protoplasm in all directions with many cycles. Under these circumstances it 

is more natural to define all the basic syllogistic propositions in the way they would satisfy 

the inverse relationship, when all converses are valid: óAll S are Pô = óAll P are Sô and so on. 

In other words, then we can draw more natural conclusions for protoplasmic tubes which are 

decentralized and have some cycles. The formal syllogistic system over propositions with 

such properties is constructed in [A2] . This system is called performative syllogistics. Its 

atomic syllogistic propositions are defined as follows: 

 

¶ SaP. In formal performative syllogistics: there exist A such that A is S and for any A, A is              

S and A is P. In Physarum model: there is a string AS and for any A which is a neighbour 

for S and P, there are strings AS and AP. This means that we have a massive-parallel occu-

pation of region, where the cells S and P are located. 

¶ SiP. In formal performative syllogistics: for any A, both óA is Sô is false and óA is Pô is 

false. In Physarum model: for any A which is a neighbour for S and P, there are no strings 

AS and AP. This means that the plasmodium cannot reach S from P or P from S immediate-

ly. 

¶ SeP. In formal performative syllogistics: there exist A such that if óA is Sô is false, then                  

óA is Pô is true. In Physarum model: there exists A which is a neighbour for S and P such 

that there is a string AS or there is a string AP. This means that the plasmodium occupies               

S or P, but surely not the whole region, where the cells S and P are located. 



¶ SoP. In formal performative syllogistics: for any A, óA is Sô is false or there exist A such 

that óA is Sô is false or óA is Pô is false. In Physarum model: for any A which is a neighbour 

for S and P there is no string AS or there exist A which is a neighbour for S and P such that 

there is no string AS or there is no string AP. This means that the plasmodium does not oc-

cupy S or there is a neighbour cell which is not connected with S or P by a protoplasmic 

tube. 

 

In the performative syllogistics we can analyse the collective dimension of behaviour. 

Within this system we can study how the plasmodium occupies all possible attractants in any 

direction if it can only see them. So, this system shows logical properties of a massive-parallel 

behaviour (i.e. the collective dimension of behaviour). One of the most significant notions 

involved in this implementation of performative syllogistics in Physarum topology is a neigh-

bourhood. We can define a distance for the neighbourhood differently, i.e. we can make it 

longer or closer. So, from different neighbourhoods it will follow that we deal with different 

universes of discourse. 

 

The Physarum performative syllogistics is a very simple logical system with massive-

parallel conclusions. This system can be defined within Physarum Schºnhage's storage modi-

fication machines. Nevertheless, it can be defined within a super-computing approach as well. 

The matter is that in the plasmodium behaviour we face a quantum uncertainty which says 

about that the plasmodium ñcalculatesò much more, than conventional abstract automata such 

as Physarum Schºnhage's storage modification machines. 

 

So, if we perform the double-slit experiment for Physarum polycephalum, we detect the 

very similar or even the same self-inconsistencies showing that we cannot approximate atom-

ic individual acts of Physarum as well as it is impossible to approximate single photons. In-

deed, to approximate atomic acts of Physarum we can carry out the double-slit experiment for 

Physarum to show that propagating protoplasmic tubes can be considered a collective behav-

iour at a time, too.  

 

Let us take the first screen with two slits which are covered or opened and the second 

screen behind the first at which attractants are distributed evenly. Before the first screen there 

is an active zone of plasmodium. Then let us perform the following three experiments: (i) slit 

1 is opened, slit 2 is covered; (ii) slit 1 is covered, slit 2 is opened; (iii) both slit 1 and 2 are 

opened (see Fig. 4). In the first (second) experiment protoplasmic tubes arrive at the screen at 

random in a region somewhere opposite the position of slit 1 (slit 2). We have a curve P1(x) 

(respectively, P2(x)) which is interpreted probabilistically: Pi(x) dx is equal the probability of 

tubes arriving at the screen in some region (x, x + dx), where i = 1, 2.  

 

 

 

 

 

 



 

 

Figure 4. The result of reaching plasmodium protoplasmic tubes at a screen when (a) only slit 1 is 

open; (b) only slit 2 is open; (c) both slits are open. The curves P1(x), P2(x), P12(x) represent the inten-

sity of the tubes passing through the slits [A11], [A15]. 

 

 

 



The difference from the experiments with particles consists in that tubes split before the 

second screen (see Fig. 4a, 4b) and we always have several tubes split from the one and reach-

ing the screen in some region simultaneously (see Fig. 5). Let us denote all tubes landing at 

the second screen by A, thereby all tubes that pass through slit 1 by A1 and all tubes that pass 

through slit 2 by A2. Now we can check if there is a partition of set A in case of Physarum into 

sets A1 and A2. We open both slits. Then we see that the plasmodium behaves like electrons, 

namely it can propagates just one tube passing through either slit 1 or slit 2 or it can propa-

gates two tubes passing through both slits simultaneously. In the second case, these tubes split 

before the second screen and do not always occur at the same place, i.e. they appear to occur 

randomly across the whole screen (Fig. 4c).  

 

Figure 5. The real experiment with the Physarum plasmodium when only slit 1 is open, see [A15]. 

 
 

 



 

 

Thus, the total probability P(A) corresponding to the intensity of plasmodium reaching 

the screen is not just the sum of the probabilities P(A1) and P(A2). This means that the plas-

modium has the fundamental property of electrons discovered in the double-slit experiment. 

However, we can rather state that we observe the individual-collective duality in the behav-

iour, not only the particle-wave duality. Does it mean that electrons have the same duality 

instead of the particle-wave duality? In any case the experiment with Physarum shows more 

fundamental property of behaviour than the quantum uncertainty observed with electrons. 

This property is said to be the individual-collective duality. 

 

In order to involve the individual-collective duality of plasmodia in our calculations, we 

can define a new abstract object ï wave set [M1] . The wave set includes as many versions of 

behaviour of the whole system as possible. It looks like the quantum bit (or qubit for short). 

Let us remember that a classical bit can be 0 or 1. The qubit exists in various superpositions of 

0 and 1 at the same time. There is an uncertainty of either 0 or 1, but qubit behaves like both  

0 and 1. In other words, each quantum state is described in terms of classical states, associat-

ing two numbers with each: absolute amplitude (between 0 and 1) which when squared gives 

you the probability of obtaining that classical state when you measure the system, and a com-

plex phase which governs interference effects. The classical states 0 and 1 are the top point 

and bottom point of the sphere, while the other states are in superposition. The points around 

the equator represent states where there is an equal probability of measuring 0 or 1. As a re-

sult, we can represent the state of a qubit as simply the point on the surface of a sphere, 

known as a Bloch sphere. 

 

We sketched a formal logical language for extending any formal structure to wave sets 

[A8] , [A13]. For example, using this language it is possible to extend Boolean algebra or 

group theory to systems on wave sets. Calculations within the media of wave sets can be de-

fined as a version of super-computing. Notice that particular cases of Kolmogorov-Uspensky 

machines or Schºnhage's storage modification machines are presented by game trees. Within 

the super-computing approach over wave sets we can define game structures for an instable 

environment [A8] . These structures describe the massive-parallel behaviour of plasmodia. 

 

 

 

 

 

 

 

 

 

 

 



2. Programming of Physarum storage modification 

machine 

 

 

2.1. Logical-philosophical assumptions 

 

 

If we understand Physarum computing as super-computing over wave sets, we can use 

algorithms of Physarum computing for behavioural sciences such as behavioural economics, 

behavioural logic, game theory, decision theory, etc. In business intelligence the majority of 

expert systems used to analyse an organization's raw data appeal to statistical and econometric 

tools. In their possible applications they are extremely limited by some fundamental assump-

tions about the characters of material laws. First of all, it is assumed that the system of the 

material universe consists of primary bodies (atoms) and their combinations and relationships 

described by mathematical equalities, in particular it is supposed that each atom bears its own 

separate and independent effect so that the total state is being compounded of a number of 

separate effects detected in the proceeding state. In other words, in order to explore the total 

state we should present an appropriate proceeding state as an abstract machine such as Kol-

mogorov-Uspensky machine or Schºnhage's storage modification machine. 

 

Rene Descartes was one of the first thinkers who have put forward the assumption that 

wholes can be studied due to laws of connection between their individual parts described by 

maths, i.e. wholes are subject to different laws in proportion to the differences of their parts 

and these proportions can be analysed mathematically. This one of the main presuppositions 

of mathematical tools in science is called measurability and additivity of reality. Due to this 

assumption modern physics can have obtained all its results. For discovering the material uni-

verse it has appealed to additive measures such as mass, force, energy, temperature, etc. Eco-

nomics and conventional business intelligence tries to continue this empiricist tradition and in 

statistical and econometric tools they deal only with the measurable aspects of reality. They 

try to obtain additive measures in economics and studies of real intelligent behaviour, also. 

 

Nevertheless, there is always the possibility that there are important variables of eco-

nomic systems which are unobservable and non-additive in principle. We should understand 

that statistical and econometric methods can be rigorously applied in economics just after the 

presupposition that the phenomena of our social world are ruled by stable causal relations 

between variables. However, let us assume that we have obtained a fixed parameter model 

with values estimated in specific spatio-temporal contexts. Can it be exportable to totally dif-

ferent contexts? Are real social systems governed by stable causal mechanisms with atomistic 

and additive features? 

 



 

 

Thus, in statistical and econometric tools of business intelligence we accept only phe-

nomena with causal connections measured by additive measures. Nevertheless, in the social 

world we deal with symbolic interactions studied by non-additive labels (symbolic meanings 

or symbolic values). For accepting the variety of such phenomena we should avoid additivity 

of basic labels. 

 

Non-additivity of phenomena does not mean that they cannot be studied mathematical-

ly. There are some rigorous approaches such as p-adic probability theory which allow us to do 

it. There has been developed even p-adic quantum mechanics started from the publication of 

Igor Volovich in 1987. In p-adic quantum mechanics, p-adic probabilities are applied instead 

of real ones. 

 

The most significant feature of p-adic probabilities (or more generally, non-

Archimedean probabilities or probabilities on infinite streams) is that they do not satisfy addi-

tivity. On the one hand, the p-adic analogies of the central limit theorem in real numbers face 

the problem that the normalized sums of independent and i.d. random variables do not con-

verge to a unique distribution, there are many limit points, therefore there is no connection 

with the usual bell type curve. In other words, in p-adic distributions we cannot build up the 

Gauss curve as fundamental notion of statistics and econometrics. On the other hand, the 

power set over infinite streams like p-adic numbers is not a Boolean algebra in general case. 

In particular, there is no additivity ï we cannot obtain a partition for any set into disjoint sub-

sets whose sum gives the whole set [M1] , [A8] , [A9] . Using p-adic (non-Archimedean) prob-

abilities we can disprove Aumann's agreement theorem [A8] , [A9] and develop new mathe-

matical tools for game theory, in particular define context-based games by means of coalge-

bras or cellular automata [A10], [A12]. In these context-based games we can appeal just to 

non-Archimedean probabilities. These games can describe and formalize complex reflexive 

processes of behavioural finances (such as short selling or long buying). 

 

The programming language for Physarum behaviour we have constructed, on the one 

hand, simulates the Physarum behaviour and, on the other hand, shows which mathematical 

tools can be implemented in its behaviour. In particular, we consider Physarum polycephalum 

as simulation model for context-based games and behavioural finances. 

 

Let A be a set of any nature. It is built up over atoms. Its powerset denoted by P(A) is 

defined as a family of all subsets of A. Let U be the universe consisting of things as atoms. 

Every member of P(U) is called event. According to Descartes, the material universe is meas-

urable. This means that each event E may have a characteristic number. Let this number P(E) 

be called probability measure of E. Hence, P(.) is regarded as a set function (i.e., a function 

with sets constituting its domain). 

 

The probability measure satisfies the following three axioms: (i) measurability; (ii) cer-

tainty; (iii) additivity. 

 



In statistical and econometric tools of business intelligence these axioms are basic, too. 

However, if we would like to involve quantitative methods to analysing non-additive labels of 

symbolic interactions, we should avoid these axioms. In symbolic interactions we cannot de-

fine additive measures. Conventionally, probability measures run over real numbers of the 

unit [0,1] and its domain is a Boolean algebra of P(U) with atoms. 

 

Let us suppose that the sample space U is not fixed, but changes continuously. It can 

grow, be expanded, decrease or just change in itself. In this case we will deal not with atoms 

as members of U, but with streams. Let us denote this non-stable set by U* and call it a wave 

set. The powerset P(U*) cannot be a Boolean algebra [M1] , [A8] , [A9] . 

 

We can consider Physarum behaviours within a certain topology of attractants and re-

pellents as wave sample set U*. Physarum behaves by plasmodia which can have a form of 

either waves or protoplasmic tubes. Plasmodia grow from active zones concurrently and in                 

a parallel manner toward attractants. At the same time, they avoid repellents. 

 

Assume that there are two neighbour attractants a and b. We say that there is a string ab 

or ba if both attractants a and b are occupied by the plasmodium. As a result, we observe                

a continuous expansion of the set of strings. It can be regarded as U* (see Fig. 6). 

 

Figure 6. The number of members of U which satisfy properties óAttractants accessible for the attract-

ant N by protoplasmic tubesô and óNeighbours for the attractant Nô for time t=0, 1, 2, 3. 

 

 

 



 

 

The wave set U* consists of streams of data for different time t=0, 1, 2, 3,é                          

Let us show how we can build up U* constructively. Suppose that A, B are subsets of U and  

A := óAttractants accessible for the attractant N by protoplasmic tubesô and B := óNeighbours 

for the attractant Nô. The property B is verified on the same number of members of U for any 

time t=0, 1, 2, 3, é Nevertheless, the property A is verified on a different number of members 

of U for different time t=0, 1, 2, 3, é This means that we can deal with infinite streams:  

 

/A*/ := (/A/ for t=0; /A/ for t=1; /A/ for t=2, ...); 

 

/B*/ := (/B/ for t=0; /B/ for t=1; /B/ for t=2, ...); 

 

/U*/ := (/U/ for t=0; /U/ for t=1; /U/ for t=2, ...); 

 

where /X/ means a cardinality number of X. Notice that if /U/ = p ï 1, then /A*/, /B*/, /U*/ 

cover p-adic integers.  

 

Thus,   

A* := (A for t=0; A for t=1; A for t=2, ...); 

 

B* := (B for t=0; B for t=1; B for t=2, ...); 

 

U* := (U for t=0; U for t=1; U for t=2, ...). 

 

They are wave sets which can be defined as families of infinite streams mutually dependent 

on each other. Cardinalities of those unconventional sets are non-Archimedean numbers. Then 

we can define the probability of A* by the standard proportional relation: 

 

P(A*) := PS*(A*) = n(A*)/N, 

 

where 

 

/S*/=N, n(A*) = /A*& S*/. 

 

These probabilities are non-Archimedean [A8] . In this way, on the medium of plasmodia we 

can disprove Aumannôs agreement theorem and many other statements of classical game the-

ory. In other words, we can define on the medium of plasmodia knowledge operators, game 

strategies, game rules, etc. 

 



Let us assume that attractants are regarded as payoffs for Physarum and active zones of 

pseudopodia are regarded as players. Let us show how we can define a zero-sum game. An-

drew Adamatzky has performed promising experiments showing that there are cases when 

sets B* i (:= óAttractants occupying by agent iô) are disjoint. Let us suppose that we have only 

two agents. The first is presented by usual Physarum polycephalum  plasmodia. The second 

by another species called Badhamia utricularis plasmodia (PhyX for short). Physarum grows 

definitely faster than PhyX and overtakes more flakes at the same time than the latter (see Fig. 

7). Only if the inoculum was ñfatterò for PhyX, PhyX might grow faster. Moreover, if the in-

vasive growth front of PhyX is well nourished by oat it easily overgrows the opposing tube 

system of Physarum. So, at the microscopic level we can find out that in most observations 

Physarum could grow into branches of PhyX, while PhyX could grow over Physarum strands 

[P6], [P13]. We can see that somehow Physarum feeds on small branches of PhyX (see Fig. 

7). 

 

Thus, in case of Physarum and PhyX we observe a competition in the small branches. 

For them some knowledge operators are disjoint. 

 

Figure 7. The experiment with two agents: fronts of growing pseudopodia of Physarum polycephalum 

(Phys) and Badhamia utricularis (Phyx), see [P6], [P13]. 

 
  

 

 



 

 

Figure 8. The experiment with two agents: Physarum polycephalum could grow into branches of Bad-

hamia utricularis (PhyX), see [P6], [P13]. 

 

 

 

Thus, storage modification machines on plasmodia are not conventional. First of all, we 

assume the principle of individual-collective duality [P15], [A15], therefore we avoid the no-

tion of elementary (atomic) acts. As a result, we use the notion of wave sets in computation 

and appeal to non-Archimedean probabilities in probability theory and game theory. For ex-

ample, let us consider cercariae, free-swimming larvae of pubertal generation parasitizing 

vertebrate animals. They are capable to insinuate into skin of human being who is for them              

a casual host, invoking at him/her an allergic reaction, the so-called cercarial dermatitis. In 

other words, human beings can play role of attractants for cercariae collectives (see Fig. 9). 

The behaviour of collectives of trematode larvae (miracidiae and cercariae) can be considered 

intelligent. For describing that behaviour, we appealed to the behavioural logic of Physarum 

polycephalum. We detected that the behaviour of one-cell organism of Physarum and the be-

haviour of local group of cercariae have identical patterns. So, these patterns may be consid-

ered an effect of the individual-collective duality. In some situations at a time, living agents 

may behave individually, but in the same situations at another time, they may behave collec-

tively. 

 

 



Figure 9. The stimulation of the following operations in cercariae motions: (A) the fusion of cercariae 

collectives, (B) the multiplication of cercariae collective, where the human beings are attractants and 

cercariae collectives behave like Physarum protoplasmic tubes which perform fusion or multiplication. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

2.2. Programming assumptions 

 

 

We have obtained a basis of new object-oriented programming language for P. poly-

cephalum computing. Within this language we can check possibilities of practical implemen-

tations of storage modification machines on plasmodia and their applications to behavioural 

science such as behavioural economics and game theory. The proposed language can be used 

for developing programs for P. polycephalum by the spatial configuration of stationary nodes. 

Geometrical distribution of stimuli can be identified with a low-level programming language 

for Physarum machines.  

 

At the beginning, we have proposed to construct logic gates through the proper geomet-

rical distribution of stimuli for P. polycephalum. This approach has been adopted from the 

ladder diagram language widely used to program Programmable Logic Controllers (PLCs). 

Flowing power has been replaced with propagation of plasmodium of P. polycephalum. Plas-

modium propagation is stimulated by attractants and repellents. Rungs of the ladder can con-

sist of serial or parallel connected paths of Physarum propagation. A kind of connection de-

pends on the arrangement of regions of influences of individual stimuli. If both stimuli influ-

ence Physarum, we obtain alternative paths for its propagation. It corresponds to a parallel 

connection (i.e., the OR gate). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If the stimuli influence Physarum sequentially, at the beginning only the first one, then the 

second one, we obtain a serial connection (i.e., the AND gate).  

 



 
 

The NOT gate is imitated by the repellent avoiding Physarum propagation.  

 

 
 

In the proposed approach, we have assumed that each attractant (repellent) is character-

ized by its region of influence (ROI) in the form of a circle surrounding the location point of 

the attractant (repellent), i.e., its center point. The intensity determining the force of attracting 

(repelling) decreases as the distance from it increases. A radius of the circle can be set assum-

ing some threshold value of the force. The plasmodium must occur in a proper region to be 

influenced by a given stimulus. This region is determined by the radius depending on the in-

tensity of the stimulus. Controlling the plasmodium propagation is realised by activat-

ing/deactivating stimuli.  

 

Logic values for inputs have the following meaning in terms of states of stimuli: 0 ï at-

tractant/repellent deactivated, 1 ï attractant/repellent activated. Logic values for outputs have 

the following meaning in terms of states of stimuli: 0 ï absence of P. polycephalum at the 

attractant, 1 ï presence of P. polycephalum at the attractant. 

 



 

 

At the second stage, we have adopted more abstract models than distribution of stimuli 

to program P. polycephalum machines which can be identified with programming in the high-

level language. The choice fell on Petri nets. Petri nets were first developed by C.A. Petri. 

Petri nets are a powerful graphical language for describing processes in digital hardware. We 

have shown how to build Petri net models, and next implement as P. polycephalum machines, 

of basic logic gates AND, OR, NOT, and simple combination circuits. In our approach, we 

use Petri nets with inhibitor arcs. Inhibitor arcs are used to disable transitions. Inhibitor arcs 

test the absence of tokens in a place. A transition can only be if all its places connected 

through inhibitor arcs are empty. This ability of Petri nets with inhibitor arcs is used to model 

behaviour of repellents. Plasmodium of Physarum avoids light and some thermo- and salt-

based conditions and this fact can be modelled by inhibitor arcs. The Petri net model (code in 

the high-level language) can be translated into the code in the low-level language, i.e., geo-

metrical distribution of attractants and repellents of the Physarum machine.  

 

In the proposed Petri net models, we can distinguish three kinds of places: 

 

(1) Places representing P. polycephalum. For such a place, the presence of the token means 

that plasmodium of Physarum is present in the origin point. Otherwise, the absence of the 

token means that there is no plasmodium.  

(2) Places representing input attractants or repellents. For such a place, the presence of the 

token means that the attractant/repellent is activated. Otherwise, the absence of the token 

means that attractant/repellent is deactivated. 

(3) Places representing output attractants. For such a place, the presence of the token denotes 

the present of Physarum at the attractant (Physarum occupies the attractant). Otherwise, 

the absence of the token denotes the absence of Physarum polycephalum at the attractant. 

 

In the AND gate, the transitions T represents the flow (propagation) of plasmodium 

from the origin place to the output attractant. T is enabled to fire if both attractants are activat-

ed. 

 

 
 

In the OR gate, the transitions T1 and T2 represent the alternative flows of plasmodium from 

the origin place to the output attractant. T1 is enabled to fire if the first attractant is activated.  

 

 



T2 is enabled to fire if the second attractant is activated. 

 

 
 

In the NOT gate, the transition T represents the flow (propagation) of plasmodium from the 

origin place to the output attractant. T is enabled to fire if the repellent is deactivated. 

 

 
 

 

Then, experimentally, we have built a P. polycephalum demultiplexer based on the lad-

der diagram structure. A demultiplexer is a device taking a single input signal and selecting 

one of many data-output lines, which is connected to the single input. So, using the ladder 

diagram approach, we can determine geometrical distribution of attractants and repellents for 

the 1-to-2 demultiplexer [P4], see Fig. 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 6. The 1-to-2 demultiplexer. 

 

 
 

Experiments have been performed using the experimental environment for a particle 

model of P. polycephalum. Pictures taken by Jeff Jones show how Physarum polycephalum 

was propagated in each situation, see [P4]. 

 

(1) s = 0 and d = 0: uneventful, because there is no data regardless of switch position. 

 
 

 

 

 

 

 

 

 

 

 

 



(2) s = 0 and d = 1: no repellent causes the stream to go to the upper output attractant, the 

model does not grow down because it is outside the region of influence of the lower out-

put attractant. 

 
 

 

(3) s = 1 and d = 0: uneventful, because there is no data regardless of switch position. 

 
 

 

(4) s = 1 and d = 1: the repellent causes selection of the lower path to the lower output                  

attractant. 

 
 

 

 

 

 




















































































































































































































